

OPB1250-3520XXR

1.25Gbps SFP Bi-Directional Optical Transceiver Module, 20km Reach, 1310nm TX / 1550nm RX

Features

- Dual data-rate of 1.25Gbps/1.063Gbps operation
- 1310nm FP laser and PIN photodetector for 20km transmission
- Compliant with SFP MSA and SFF-8472
- BIDI LC connector
- Hot-pluggable SFP footprint
- Low power dissipation
- Metal enclosure, for lower EMI
- RoHS compliant
- Single +3.3V power supply
- Support Digital Diagnostic Monitoring interface
- Operating Case Temperature: Standard: 0~70°C, Industrial: -40~85°C

Applications

- Gigabit Ethernet
- Fiber Channel
- Switch to Switch interface
- Switched backplane applications
- Router/Server interface
- Other optical transmission systems

Description

Optcore 1000BASE-BX-U BIDI SFP optical transceiver module are high performance, cost effective modules supporting dual data-rate of 1.25Gbps/1.0625Gbps and 20km transmission distance with SMF. The 1000BASE-BX-U BIDI SFP transceiver consists of three sections: a FP laser transmitter, a PIN photodiode integrated with a transimpedance preamplifier (TIA). All 1000BASE-BX-U BIDI SFP optical transceiver module satisfy class I laser safety requirements. The 1000BASE BIDI SFP transceivers are compatible with SFP Multi-Source Agreement (MSA) and SFF-8472. For further information, please refer to SFP MSA.

Related Products

- OPB1250-5320XXR: 1000BASE-BX-D SFP Optical Transceiver Module for 1000BASE-LX Gigabit Ethernet & 1X Fibre Channel.
- OPB1250-3420XXR: 1000BASE-BX-U SFP Optical Transceiver Module for 1000BASE-LX Gigabit Ethernet & 1X Fibre Channel.
- OPB1250-4320XXR: 1000BASE-BX-D SFP Optical Transceiver Module for 1000BASE-LX Gigabit Ethernet &

1X Fibre Channel.

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	4.5	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

Recommended Operating Conditions

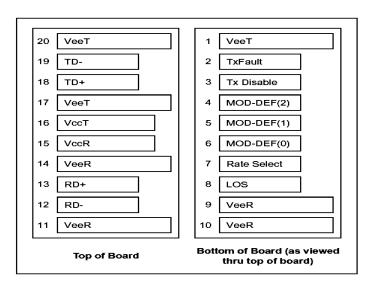
Parameter		Symbol	Min	Typical	Max	Unit	
Operating Case Temperature		Standard	- Tc	0		+70	°C
		Industrial		-40		+85	°C
Power Supply Voltage		Vcc	3.13	3.3	3.47	V	
Power Supply Current		Icc			300	mA	
Gigabit Ethernet					1.25		Chan
Data Rate	Fiber Channel				1.063		Gbps

Optical and Electrical Characteristics

Parai	meter	Symbol	Min	Typical	Max	Unit	Notes	
	Transmitter							
Centre V	Vavelength	λс	1260	1310	1360	nm		
Spectral V	Vidth (RMS)	Δλ			4	nm		
Average C	Output Power	Pout	-9		-3	dBm	1	
Extinct	ion Ratio	ER	9			dB		
	Optical Rise/Fall Time (20%~80%)				0.26	ns		
Data Input Sv	Data Input Swing Differential		400		1800	mV	2	
Input Differer	Input Differential Impedance		90	100	110	Ω		
TV D's abla	Disable		2.0		Vcc	V		
TX Disable	Enable		0		0.8	V		
TV =!4	Fault		2.0		Vcc	V		
TX Fault	Normal		0		0.8	V		
Receiver								
Centre V	Centre Wavelength		1530		1570	nm		
Receiver Sensitivity					-22	dBm	3	

1.25GB/S SFP BIDI OPTICAL TRANSCEIVER MODULE DATA SHEET

Receiver Overload		-3		dBm	3
LOS De-Assert	LOS _D		-23	dBm	
LOS Assert	LOSA	-30		dBm	
LOS Hysteresis		1	4	dB	
Data Output Swing Differential	Vout	400	1800	mV	4
1.00	High	2.0	Vcc	V	
LOS	Low		0.8	V	


Notes:

- 1. The optical power is launched into SMF.
- 2. PECL input, internally AC-coupled and terminated.
- 3. Measured with a PRBS 2^{7} -1 test pattern @1250Mbps, BER $\leq 1 \times 10^{-12}$.

Timing and Electrical

Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	μs
Time To Initialize, including Reset of Tx Fault	t_init			300	ms
Tx Fault Assert Time	t_fault			100	μs
Tx Disable To Reset	t_reset	10			μs
LOS Assert Time	t_loss_on			100	μs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock			400	KHz
MOD_DEF (0:2)-High	V _H	2		Vcc	V
MOD_DEF (0:2)-Low	VL			0.8	V

Pin Diagram

1.25GB/S SFP BIDI OPTICAL TRANSCEIVER MODULE DATA SHEET

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	V _{EET}	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	V _{EER}	Receiver ground	1	
10	V _{EER}	Receiver ground	1	
11	V _{EER}	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	V_{EER}	Receiver ground	1	
15	V _{CCR}	Receiver Power Supply	2	
16	V _{CCT}	Transmitter Power Supply	2	
17	V _{EET}	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	V _{EET}	Transmitter Ground	1	

Notes:

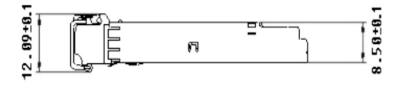
Plug Seq.: Pin engagement sequence during hot plugging.

- TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\sim10k\Omega$ resistor. Its states are:

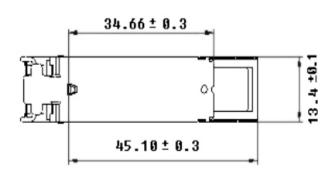
Low (0 to 0.8V): Transmitter on (>0.8V, < 2.0V): Undefined

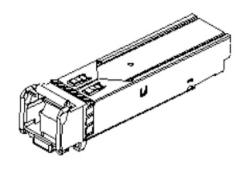
High (2.0 to 3.465V): Transmitter Disabled Open: Transmitter Disabled

- 3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.
 - Mod-Def 0 is grounded by the module to indicate that the module is present


Mod-Def 1 is the clock line of two wire serial interface for serial ID

Mod-Def 2 is the data line of two wire serial interface for serial ID


- 4) LOS is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.
- 5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.



Mechanical Dimensions

Ordering information

Part number	Description
OPB1250-3520NCR	1000BASE-BX-U SFP Optical Transceiver, Tx1310nm/Rx1550nm, 1.25Gbps, 20km,0~70°C
OPB1250-3520DCR	1000BASE-BX-U SFP Optical Transceiver, Tx1310nm/Rx1550nm, 1.25Gbps, 20km, DDM,0~70°C
OPB1250-3520DTR	1000BASE-BX-U SFP Optical Transceiver, Tx1310nm/Rx1550nm, 1.25Gbps, 20km, DDM,-40~85°C

Warnings

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures.

Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

Email:sales@cnoptcore.com

Website: http://www.cnoptcore.com

The information presented is subject to change without notice. Optcore assumes no responsibility for inaccuracies contained herein. Version 1.3 Copyright © Optcore Technology.

All rights reserved.